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We develop a new formalism for the prediction of secular variations in the gravitational potential field of a
spherically symmetric, self-gravitating, (Maxwell) viscoelastic planetary model subjected to an arbitrary surface
load which may include a gravitationally self-consistent ocean loading component. The theory is applied to
generate the most accurate predictions to date, of the present-day secular variations in the zonal harmonics of
the geopotential (the so-called J, for degree £) arising as a consequence of the late Pleistocene glacial cycles.
In this respect, we use the very recent ICE-3G reconstruction of the last late Pleistocene deglaciation event
(Tushingham and Peltier, 1991). A comparison of these predictions with those generated using simplified disk
models of the ice sheets, which have been used in all previous studies of the §, harmonics (£ > 2), indicates
that the disk model approximation introduces unacceptably large errors at all spherical harmonic degrees except
perhaps §=2. Predictions have also been made using a eustatic loading approximation (also used in previous
studies) in place of a gravitationally self-consistent ocean loading component, and we have found that the
resulting discrepancy is largest at degrees 2, 8 and 10. In the case of I, the magnitude of the error incurred
using the eustatic approximation can be as large as order 10-15% of the predicted value. We have attributed
this discrepancy to the present day net flux of water away from the equatorial regions arising from the remnant
present-day adjustment associated with the late Pleistocene glacial cycles. The effect represents a heretofore
unrecognized contribution to the L harmonics, or altematively the nontidal acceleration of Earth's axial rate
of rotation. In terms of the latter, the maximum anomaly in the length of day is approximately 1.7 psfyr. We
also consider the sensitivity of the J, data 1o variations in the radial mantle viscosity profile by using a suite
of forward calculations and an examination of Fréchet kernels. The theory required for the computation of those
kemels is described herein. We find that the radial variation in sensitivity can be a strong function of the
viscosity model used in the calculations. For models with a uniform upper mantle viscosity (Vyy) of 10* Pa
s, forward predictions of the J, harmonics exhibit a pronounced peak when a wide enough range of lower
mantle viscosities (vyy) are considered (we denote the vy, value at this peak as 9f,). At the lowest degrees
(2 < 4), Fréchet kemels computed for a series of increasing vy, values (10% Pa s < v, < 10% Pa s) indicate
a migration of the dominant sensitivity of the J, data to variations in viscosity from regions below
approximately 1200 km depth (for v,,, < 9/,,) to regions above this depth in the lower mantle (for vy, 2 9/,).
The sensitivity of the J, data to variations in the viscosity profile in the shallowest paris of the lower mantle,
for the case Vi, 2 ¥y, is also reflected in a set of forward calculations described herein. As an example, J,
predictions made using Earth models in which the viscosity above 1200 km depth is constrained to be 10°' Pa
s, do not exhibit the multiple solutions characteristic of the vy, = 10?' Pa s calculations. The same is true of
Earth models in which the upper mantle viscosity is weakened an order of magnitude to 10% Pa s. The theory
described herein is also applied to compute the J, signal (¢ < 10) arising from the retreat of small ice sheets
and glaciers described by Meier (1984) and also from any potential variations in the mass of the Antarctic and
Greenland ice sheets. The present day J, signal due to the late Pleistocene glacial cycles dominates the signal
from Meier’s sources at all degrees except §=3. In contrast, the J, signal arising from mass variations in the
Antarctic and Greenland ice sheets is potentially comparable to the former. A comparison of observational
constraints on the J, data with predictions of the postglacial rebound signal described in this paper, in order
to infer mantle rheology, cannot proceed until constraints are placed on the present-day mass flux of these large
polar ice sheets. We show that the constraints required are weakest at degrees £=2 and 4. Finally, we outline
a potentially important procedure for incorporating predictions of the J, signal due to the late Pleistocene glacial
cycles and Meier's sources, with an observational constraint on the J, datum, to yield bounds on the present-day
net mass flux from the Antarctic and Greenland ice sheets. A rigorous application of this procedure must wait
until observational constraints on J; are reestablished in the literature.
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Ontario, Canada. y ;
Satellite-derived maps of Earth’s geoid reveal a field of marked

Copyright 1993 by the American Geophysical Union. complexity [B.g., Marsh et al., 1990]. At the largesl wavelengﬂ'ls
the geoid undulations are dominated by the signal from the

Paper number 92JB02700. convective circulation in Earth’s interior [Richards and Hager,
0148-0227/93/92JB-02700$05.00 1984; Forte and Peltier, 1987, 1991; Ricard and Vigny, 1989];
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however, a multitude of other effects also contribute [Richards and
Hager, 1988]. This paper is concerned with the influence on the
geoid of two phenomena: first, the present-day isostatic
disequilibrium associated with incomplete adjustment following the
last major late Pleistocene deglaciation event of the current ice
age; second, the present-day retreat of small ice sheets and glaciers
[Meier, 1984] and any recent variations in the mass of the
Antarctic and Greenland ice sheets.

In previous work the late Pleistocene deglaciation induced
anomaly in Earth’s gravitational field has been isolated from other
contributors to that field using two approaches. First, peak geoid
and/or free-air gravity anomalies over previously glaciated regions
have been considered [e.g., Wu and Peltier, 1983; Mitrovica and
Peltier, 1989]. Recent work, however, has suggested that even
when such regions coincide with apparently stable continental
cratons (as, for example, in Laurentia), the signal associated with
the mantle convective circulation may still constitute the dominant
contribution to the observed anomaly [Peltier et al., 1991, 1992].
An alternate approach to isolating the anomaly due 1o incomplete
glacial isostatic adjustment, given the relatively short relaxation
time associated with this process, is to consider secular variations
in Earth’s gravity field [Wu and Peltier, 1984; Yoder and Ivins,
1985; Peltier et al., 1986; Mitrovica and Peltier, 1989].
Continuing advances in absolute gravity instrumentation [Zumberge
et al., 1982] will make it possible to accurately determine local
values of g, associated with glacial isostatic adjustment, within the
next decade [Mitrovica and Peltier, 1989]. Furthermore, global
measures of the secular variation in Earth’s geopotential can be
obtained through an analysis of satellite ranging data. Of
particular interest are the amplitudes of the zonal harmonics in the
spherical harmonic decomposition of this variation, the so-called
J

A large number of studies have compared published values of
the J, coefficients, for £ < 4 [e.g., Peltier, 1982, 1983; Yoder et
al., 1983; Rubincam, 1984; Cheng et al., 1989] with predictions
based upon numerical models of the glacial isostatic adjustment
process, to derive constraints on the radial variation of mantle
theology [e.g., Wu and Peltier, 1984; Peltier, 1985; Yoder and
Ivins, 1985; Yuen and Sabadini, 1985; Yuen et al., 1987; Mitrovica
and Peltier, 1989]. However, the value of J, estimated from
satellite ranging data is now under review (Eanes, personal
comm.). It appears that the effect on the J, estimate of the
uncertainty associated with the J, signal from either the 18.6 year
body tide (in particular, the influence of mantle anelasticity on this
tide) or from slightly shorter time scale (5 to 12 years) phenomena
(e.g. atmospheric pressure effects) has been underestimated.
Fortunately, the extension of the LAGEOS (or Starlette) derived
time series to encompass a full 18.6 year period (in approximately
4 years) should do much to decorrelate the J, estimate from the
effects of these phenomena. Furthermore, over the same time
span, it will become possible to constrain the amplitude of the 18.6
year body tide using the available VLBI data set [Herring, 1986;
Davis et al., 1991].

The significance of estimates of the J, coefficients extends
beyond the inference of the radial viscosity profile in Earth’s
mantle. Recent analyses [Yoder and Ivins, 1985; Peltier, 1988;
Sabadini et al., 1988; Trupin et al., 1992] have indicated that the
present-day melting of small ice sheets and glaciers [e.g., Meier,
1984], as well as ongoing variations in the mass balance of larger
ice sheets may have a non-negligible influence on present-day
variations in Earth’s geopotential. As a consequence, once
estimates of the J, coefficients are re-established, it may be
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possible to derive constraints on both mantle rheology and the
extent of any present-day eustatic sea level rise that may also be
occurring [Peltier and Tushingham, 1989].

These important applications require that the contribution to the
J, coefficients from both the present-day adjustment associated
with the late Pleistocene glaciation history, and from any recent
variations in the global ice/ocean mass balance, be determined as
accurately as possible.

Previous numerical predictions of the late Pleistocene
deglaciation induced signal in the J, harmonics have adopted a
number of approximations. The most significant of these relates to
simplifications in the assumed space and time geometry of the late
Pleistocene ice sheets. In the last 900 kyr these ice sheets have
experienced a series of glacial cycles, each with a period of
approximately 100 kyr [Shackleton et al., 1990]. Numerical
analyses [e.g. Mitrovica and Peltier, 1991a] have shown that
predictions of the present day state of glacial isostatic
disequilibrium and adjustment are most sensitive to the details of
the disintegration pattern during the last major deglaciation, which
extended from about 20 kyr to 5 kyr before present (B.P.).
Previous numerical predictions of the J, have, in general, ignored
the complexity of this deglaciation event, and modelled each major
ice sheet as a single circular, or elliptical, disc load with, most
commonly, a fixed perimeter and drastically simplified mass loss
history [see for example Wu and Peltier 1984; Yuen et al., 1987
and Mitrovica and Peltier, 1989]. In addition, most studies have
included, at most, only the largest of the late Pleistocene ice sheets
(the Laurentide, Fennoscandian, and Antarctic ice sheets) in their
analysis.

The growth and ablation of the ice sheets is, of course, fed by
a complementary variation in the mass of the oceans. This
variation constitutes a second significant component of the total
surface load. Since the ocean loading perturbs the gravitational
field of the planet (as a consequence of both its direct mass
attraction, and the deformation of the solid planet which it
produces), and is in turn governed by this field, the determination
of a gravitationally self-consistent space and time variation of the
ocean mass requires the solution of an integral equation known as
the sea level equation [e.g., Peltier and Andrews, 1976]. To avoid
this complication numerical predictions of the J, harmonics have
either ignored the ocean loading component entirely, or assumed
that the meltwater enters or leaves the oceans eustatically (that is,
independent of geography). One might easily assume that the
latter approximation would be quite accurate. However, since the
last major deglaciation event ended about 5 kyr B.P. the
approximation implies no change in ocean bathymetry in the
subsequent time interval. Gravitationally ~ self-consistent
calculations of ocean redistributions [e.g., Clark et al., 1978;
Peltier et al., 1978; Peltier and Tushingham, 1989; Mitrovica and
Peltier, 19915] have, in contrast, shown that appreciable variations
in ocean bathymetry, in response to the last major deglaciation
event, have persisted to the present. It should not be too surprising
if such variations were particularly efficient at exciting present-day
variations in the zonal harmonics of Earth's geopotential.

In this paper we outline a new formalism for the prediction of
secular variations in the spherical harmonic coefficients of the
gravitational potential induced by space and time varying surface
loads on a spherically symmetric, self-gravitating, viscoelastic
planet. The theory allows for the input of a totally arbitrary ice
loading history and incorporates a gravitationally self-consistent
determination of the ocean mass redistribution component of the
total surface load.
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We use the new theory to examine the excitation of the J,
coefficients arising from the ongoing response of Earth to the late
Pleistocene glacial cycles. In this respect we have three goals.
First, to provide updated predictions of the coefficients using the
recently constructed and highly resolved ICE-3G ice sheet model
of the last major late Pleistocene deglaciation event [Tushingham
and Peltier, 1991]. Second, to assess the sensitivity of the
calculations to approximations made in previous analyses; in
particular, in regards to the treatment of both the ice and ocean
components of the surface load. Finally, we will use the results,
together with determinations of Fréchet kernels (see below), to
provide a rigorous assessment of the sensitivity of the J,
predictions to mantle rheology.

Predictions of the secular variations in the zonal harmonics due
to the late Pleistocene glacial cycles have generally been limited
to Earth models with an upper mantle viscosity of 10 Pa s (as
inferred by Haskell [1936] in his analysis of Fennoscandian uplift
data), and an isoviscous lower mantle region with a viscosity value
that serves as the free parameter of the analysis. Within this
framework it is impossible to assess the detailed radial variations
in the sensitivity of the [, data to mantle rheology. In developing
a formalism for the geophysical inversion of post-glacial rebound
data Mitrovica and Peltier [1991c] derived expressions for Fréchet
kemels for the J, data. These (radially dependent) kernels map
arbitrary perturbations in the radial viscosity profile of Earth model
to variations in the data, and as such can be used to derive the true
constraints on mantle rheology which the J, data provide.
Mitrovica and Peltier [1991¢] found, for example, that the J, (¢
< 4) data were most sensitive to viscosity variations at the very
base of the mantle. Since the forward problem is a non-linear
function of viscosity [Peltier, 1974], the Fréchet kemnels will be a
function of Earth model used for their derivation. Mitrovica and
Peltier [1991¢] used a model with a factor of two increase in
viscosity across the 670 km boundary from an upper mantle value
of 10* Pas. It is not clear how the detailed sensitivity of the J,
data, to the radial mantle viscosity profile, will be altered by a
change in this Earth model.

The expressions for the Fréchet kernels derived by Mitrovica
and Peltier [1991¢] are valid only for a simplified saw-tooth ice
loading history and a eustatic ocean loading component. We will
use the new theory discussed above as a basis from which to
derive Fréchet kernels associated with the J, predictions which are
valid for an arbitrary surface load history which includes a
gravitationally self-consistent ocean mass redistribution. The
technique for computing the Fréchet kemels described herein is,
furthermore, applicable to any data set associated with the glacial
isostatic adjustment phenomenon, and can be applied to any
forward (or direct) theory for computing that adjustment.

We will compute Fréchet kemels for the J, data using Earth
models with widely varying mantle viscosities in order to examine
the manner in which the detailed sensitivity of the J, data, to
variations in the mantle viscosity profile, may be altered. The
analysis will be complemented by a suite of forward calculations
which, for the first time in the context of J, predictions, consider
both the upper and lower mantle viscosities as free parameters.

A recent inversion of the relaxation spectrum derived from the
post-glacial uplift of central Fennoscandia (Mitrovica and Peltier
[1992], following McConnell [1968]) has yielded a set of rigorous
constraints on the radial viscosity profile beneath that region.
These constraints can not rule out an average upper mantle
viscosity lower than the classical value of 10* Pa s adopted from
the work of Haskell [1986] (in fact, the constraint suggests that a
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lower band on vy, may be approximately 3 x 10% Pa s if only
McConnell’s relaxation spectrum is employed as constraint). As
a consequence, it is prudent to consider a parameter space which
includes an appreciable variation in vy,.

In the final section of this paper we will consider the potential
contribution to the present-day secular variations in the zonal
harmonics J, from recent meltings of smaller ice sheets and
glaciers and from any mass variations which may be occurring in
the much larger Antarctic and Greenland ice sheets. We will use
the tabulation provided by Meier [1984] that formed the basis of
the original analysis of Peltier [1988], which includes 31 glacial
regions totalling approximately 0.38 mm/yr of eustatic sea level
rise, as our model for the recent mass loss from smaller ice sheets
and glaciers. Recent mass variations in the Antarctic and
Greenland ice sheets are much more contentious, and our models
for these events will consider the eustatic sea level change arising
from each to be a free parameter. Since the Antarctic and
Greenland continents cover very large geographic regions, the
excitation of the J, harmonics may be sensitive to the space
dependence of any mass variations from the associated ice sheets.
We will, accordingly, consider a variety of scenarios, including
mass variations which are independent of position on the ice
sheets, proportional to present day ice thickness, and limited to the
perimeter of the ice sheets. All the calculations will incorporate
a gravilationally self-consistent ocean loading component.

MATHEMATICAL FORMULATION

We begin by outlining the mathematical theory required for the
forward calculations. The time domain impulse response of a
spherically symmetric, self-gravitating, (Maxwell) viscoelastic
planet can be written in terms of the spherical harmonic degree
dependent surface load (viscoelastic) Love numbers defined by
Peltier [1974]. These dimensionless numbers have the following
forms:

K
k= hf 8(1) + Y 1} exp (-s;1) (1a)
k=1

K
k.=k,£ 5(1) +E Y cxp(—s:f) . (1b)
k=1
The first term on the right-hand side of equations (la) and (1b)
represents the immediate elastic response (denoted by the
superscript E) of the Earth model, and the second term is the
nonelastic response. The latter is characterized by a finite
multiplicity of modes of pure exponential decay, with amplitudes
r; and r'} and inverse decay times sl. The Love numbers h,
and k, represent the coefficients of degree £ in the Legendre
polynomial expansion of the Green function for the
(nondimensional) radial displacement and potential perturbation
due to solid Earth mass redistribution, respectively. We use the
formulation described by Peltier (1985) for the determination of
those Love numbers.
The Green function for the geoid anomaly can be derived from
equation (1b). It is [Mitrovica and Peltier, 1989]

e K
GFg(1:4) =§ {A.E’(U *X B:SXP('S:f)}Pl(cosy} (2)

ka]

where

SRy ®
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and the P, are Legendre polynomials. M, and a represent the
mass and mean radius of Earth, and 7 is the angular distance from
the observation point (say 8, ¢) to the source point (6’, ¢"). The
appearance of the term equal to unity in equation (3) represents the
contribution of the direct attraction of the point mass load on
Earth’s geopotential.

Let us now consider a general surface load L(B, ¢, t). The
response of the Earth model to such a load can be computed via
a space-time convolution of the load history with the Green
function (2). The result is

G(0,0,1) = ff L(6,0",1") GF,(y,t-t) dQ di’ +&(1)
—e {1
(3)

where Q represents the entire surface area of Earth. The term &(t)
is computed (see below) to ensure that the surface mass
redistribution conserves mass.

As we have discussed, the surface load is often partitioned into
the contributions from the ice and ocean loading. If I(9, ¢, t) and
S(B, 0, 1) represent, respectively, the space-lime history of the ice
and ocean thickness, then we can write [Peltier et al., 1978]

L(®,0,4)=p, 1(8,0,1) +p, S5(0,0,1) (6)

where p; and p,, are the densities of the ice and water, respectively.
Since the late Pleistocene ice load reconstructions [e.g.
Tushingham and Peltier, 1991] are often expressed in terms of a
series of discrete melting episodes, it will be convenient to express
the individual components of equation (6) in the form

N
1(8,0,t) =Y H(t-1)AI"(6,0)

n=1

(7a)

$(0,0,t)=Y H(t-t)AS"(86,0).

(7b)

H(t - t,) is the Heaviside step function, and N is the total number
of surface load increments. There is no loss of generality between
equations (6) and (7) since the temporal discretization interval can,
theoretically, be chosen arbitrarily small.

Since we will ultimately be concerned with secular variations in
the harmonic amplitudes of Earth’s geopotential, it will also be
convenient to formulate the mathematics using a spherical
harmonic approach. Accordingly, we consider the following
spherical harmonic decompositions:

AI"(0,0)=Y ¥ ALY, (8,0)

t=o m=-i

(8a)

AS‘(9,¢)=E E ASy, Y, (6,0)

t=0 m=-1i

(80)

where the following normalization is employed for the surface
spherical harmonics Y,

MITROVICA AND PELTIER: PRESENT-DAY SECULAR VARIATIONS IN ZONAL HARMONICS

[[ ¥.(0.0) ¥y (0,0) sin 0d0d06 = 45, 5. .(9)
UNIT
SPHERE
Using equations (6), (7), (8) and (9), in equation (5) one can derive
analytic expressions for both the space and time convolution [e.g.,
Mitrovica and Peltier, 1991b] and the result is

- t
G(8,0,0=Y ) G, (Y, (6,9)

=0 m=-1 (10)
where
4 2
e {2:?1) [A(Py L (1) + P, 500 (D)
N K
Y H@-1)Y By (1,,0) (p,Aly, + p, ASpn)
n=l k=]
+&(08§,,3,, (11)
and
‘ B; :
By (t,,1) = — (1 - exp (-5, ("‘.))) @ (12)

S

I and S, in equation (11) represent the spherical harmonic
coefficients of the total ice and incremental ocean heights at time
t. That is

N
1,.(1) =Y H(t-1) Al

(13a)

N
S.H(I)=E H{f-fﬂ) &S‘:, A (13b)
n=1
The secular variations in the spherical harmonic coefficients
Gy, can be determined, mathematically, by simply taking the time
derivative of equation (11). In numerical applications of the
theory, however, we have found it more convenient to compute the
secular variations using the following simple second-order
accurate, centered finite difference:

1

A (14)
2At

G, (1) = (G (1 +A1) -G, (1-A1))

where 2At is chosen (in practise) to be a very small time interval
(we have used At = 5 years).

The spherical harmonic coefficients of Earth’s geopotential are
generally defined using a different normalization than that
expressed in equations (8) and (9) [Garland, 1979]. Indeed, in the
case of the zonal harmonics J,, Mitrovica and Peltier [1989] have
derived the following scaling factor:

J) = - % (2¢+1)” G, (1) . (15)

The calculation of the coefficients G, using equation (11), is
complicated by the fact that the coefficients of the ocean height,
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Si(), and the mass conservation term &(t), are not known at the
outset. In what follows we will very briefly outline the
calculations involved in the determination of these terms. The
interested reader is referred to Mitrovica and Peltier [1991b] for
complete details. In analogy with equation (5), a Green function
for the distance between the geoid and solid surface of the planet
is given by

K
GF,(v,1) =} {cl 5(1) + Y D} exp(—s::)} P,(cosY)

=0 k=1

(16)

where 4 P P
C1=E(1+k|—h,) an
Dt = B [ ~1h) (18)

M

This Green function is simply a scaled version of the potential
perturbation Green function derived by Peltier and Andrews
[1976].

Sea level variations can be determined by convolving the Green
function (16) with the total surface load, yielding (using equation
(6))

$(0,0,00=C(8,0) [ [[ {p,1(6"0%") +p,5(8,0",4)} -
—oa [}

GF,(yt-1)dQdt’ +E(1)  (19)

where C(0, 0) is the ocean function, defined to be unity over the
oceans and zero over the remaining surface of Earth. The term
E(t) can be determined by applying the conservation of mass
constraint to the surface load. This yields (using equation 19)

1: (I J;J{PJ (6°,0",¢") +p,, S(6°,0",1")}

E(1) =~

M, (1)

GF_(y,t-t" dQ’d:’)—
(460 )

where A, is the area of the oceans, My(t) is the mass loss history
of the ice sheets, and the symbol < > denotes an integration over
the ocean geography.

Equation (19) is an integral equation known as the sea level
equation [e.g., Peltier and Andrews, 1976]. Its solution, under the
constraint imposed by equation (20), will yield the sea level
variations whose spherical harmonic coefficients are required as
input to equation (11). Peltier et al., [1978] developed a "finite
element" approach to the solution of the sea level equation. More
recently, Mitrovica and Peltier [1991b] have derived two spherical
harmonic approaches to its solution, and we have adopted their
"pseudo-spectral” algorithm for the computations performed in the
present study.

The theory described above can be used to determine the zonal
harmonics in the secular variation of Earth’s geopotential induced
by arbitrary surface loads with gravitationally self-consistent mass
redistributions. The necessity of solving the sea-level equation in
this application can be avoided by making certain approximations
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for the ocean load variation. First, the ocean load can be ignored
entirely, in which case the coefficients ASy, and S, may be set
to zero in equation (11). A second approach is to assume that the
ocean meltwater enters (or leaves) the oceans in a manner
independent of geography. This is the so-called ’eustatic
approximation’, and it can be applied by replacing AS}, and S,
in equation (11), by [e.g. Mitrovica and Peltier, 1991b]

{AS':}EH - {pi: 4::(;: A!:a} c, 213)
(S (D) = - {Fp’_ 42"2 1,,,(:)} g, (21b)

where the C, are the spherical harmonic coefficients in the
expansion of the ocean function.

We turn now to a derivation of formulae for determining
Fréchet kernels for the J, data, The radially dependent Fréchet
kernels relate arbitrary perturbations in the radial viscosity profile
to the resulting variation in the data. One might proceed by taking
the first variation (due to a radially dependent viscosity
perturbation, which we denote by 8v(r)) of the expression for the
harmonics J, in equation (15), and thus the G, (1) in equation
(11). The terms dependent on the viscosity profile in equation
(11) are the coefficients B and the sea level harmonics S,, and
ASy,. Thus 8G,, would be a function of 8Bf &S, and
dASY,. Mitrovica and Peltier [1991¢] proceeded in this manner
and were obliged to assume that the sea level increments AS},
(and thus S,,) were stationary with respect to a perturbation in
the viscosity profile. The 8], were then a function of 8p!, and
therefore, using equations (12) and (4), a function of the variation
in each of the individual normal mode amplitudes and inverse
decay times. Peltier [1976] derived a variational principle which
permits the computation of radially dependent differential kernels
which relate arbitrary perturbations in the radial viscosity profile
to perturbations in the inverse decay times s{. Mitrovica and
Peltier [1991c] have outlined a numerical approach which may be
used to derive analogous kernels for the perturbation in the modal
amplitudes 1} and r'}. Mitrovica and Peltier [1991¢] used both
sets of kemels to complete the derivation for the Fréchet kernels
relating 8J, to dv(r).

The approach used by Mitrovica and Peltier [1991¢] has the
benefit of incorporating analytic results, but the disadvantage of
requiring the stationarity of S, and AS}, with respect to a
perturbation &v(r). In the derivation which follows we will outline
a completely numerical approach to determining the Fréchet
kernels which is applicable to any data set related to the glacial
isostatic adjustment phenomenon, and which does not suffer this
limitation. It may also be applied, in principle, to any forward (or
direct) theory for computing the adjustment of a planetary model.

Let us consider an arbitrary datum, %, which is a non-linear
function of the viscosity profile v(r). We can define the Fréchet
kemels for that datum, which we denote by FK(v(r), 1), through
the following equation:

f r2 FK(v(r),r) Slogv(r) dr .

CMA

Sx(v(r) = (22)

Peltier [1976] has derived an analytic expression which shows that
the logarithm of the inverse decay times (S{) of the Earth model
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scale with the logarithm of viscosity. Mitrovica and Peltier
[1991c] have demonstrated, using numerical tests, that an
analogous scaling holds for the modal amplitudes (rf, r'f). The
form of equation (22) is chosen accordingly.

If two forward calculations are performed using Earth models
with viscosity profiles v(r) + 8v(r) and v(r) (where dv(r) << v(r)),
then, using equation (22), we can write

a

L)+ 8v(r) = x(v(r)) = [ r*FE(v(r).r) -

CMB
log |1+ 8v(r) dr .
v(r) (23)
if we choose
Eijrer. ¥ = ioz (1 . 5"(’)] @4)
v(r)

to be a spatially localized (delta-like) function peaked at r=r, then
we can make the approximation

FK(v(r),r,)) = XV (r) +8v(r) -3 (v(r))
[ (25)
j r2&(r-r)dr

CMB

The numerical procedure defined by equations (24) and (25) is
identical to that described by Mitrovica and Peltier [1991c];
however in this case we have used it to derive the Fréchet kernels
for each datum directly rather than for each of the normal mode
amplitudes. The approach has the benefit of requiring no
approximation beyond those incorporated into our forward analysis,
and therefore it yields Fréchet kemels for the J, datum (or any
other datum related to the glacial isostatic adjustment process)
which are valid for a spherically symmetric self gravitating
viscoelastic Earth with an arbitrary ice load and gravitationally
self-consistent ocean mass redistribution.

We have found that a perturbation in viscosity &v(r) which
yields a hat function E(r-r)) with an amplitude of 0.1 provides
robust estimates of the kernels at most target depths r=r, for most
viscosity models v(r). In this respect the kernels were computed
for 32 different radial regions, 22 of which resided in the lower
mantle (this represents a hat function width of approximately 100
km in the lower mantle, and 50 km in the upper mantle; the
numerical code used in the impulse response forward calculation
incorporated three times as many node points). Fréchet kernels
derived for various viscosity models v(r) will be presented below.

CONTRIBUTIONS TO THE §, HARMONICS FROM LATE
PLEISTOCENE GLACIAL CYCLES:
PREDICTIONS AND SENSITIVITY ANALYSES

J, Predictions: Surface Load Considerations

In this section we consider forward calculations, or predictions,
of the present day secular variations of the zonal harmonics J,
due to the late Pleistocene glacial cycles. The Earth model used
in the calculations will have a radial viscoelastic structure
consisting of a 120 km thick elastic lithosphere, elastic constants
and density profile given by the seismic model PREM [Dziewonski
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and Anderson, 1981], isoviscous regions in the upper and
(generally) the lower mantle, and an inviscid core. The values of
the viscosity in the upper and lower mantle regions (to be denoted
by, respectively, vy, and v, ,,) will serve as the free parameters of
the model.

The recently published ICE-3G reconstruction of Tushingham
and Peltier [1991] will be used as the standard ice loading model
for the last major Pleistocene deglaciation event. The ICE-3G
model was derived on the basis of glacial geomorphological and
geophysical constraints, and is characterized by 14 deglaciation
increments (N = 14 in equation (7)), at 1 kyr time intervals,
extending from a glacial maximum at 18 ka to a minimum at 5 ka,
beyond which no further ice melting is assumed to occur. The
model includes ice sheets over Laurentia, the Arctic, the Canadian
Cordillera, Greenland, Fennoscandia, Siberia, as well as many
other regions (e.g., the British Islands, the Barents and Kara Seas,
Chile, etc.), and it accounts for about 117 m of the 120 m eustatic
sea level rise independently deduced by Chappell and Shackleton
[1986] on the basis of oxygen isotope data.

In order to incorporate the cyclical nature of ice sheet growth
and ablation we have added a glaciation phase of period 90 kyr
constructed by simply reversing the sign of the spherical harmonic
coefficients of the deglaciation increments and spacing them
appropriately in time preceding the last glacial maximum. We
have, furthermore, included three such glacial cycles (although the
most recent cycle accounts for over 98% of the present-day
response). This is certainly an approximation to the ice loading
history for the period prior to the last glacial maximum, however
the present-day response is strongly dominated by the details of the
final deglaciation events [Mitrovica and Peltier, 1991a], for which
the ICE-3G reconstruction provides the best available model to
date.

The solid lines on Figure 1 represent predictions of the present-
day value of the harmonics J, (2 < £ < 10) computed using the
above specified ice loading and Earth models and a gravitationally
self-consistent ocean loading component. The upper mantle
viscosity, Vyy, is held fixed at 10?! Pa s in the calculations while
v,y varies between 10* Pa s and 10® Pa s.

The curves generally exhibit a pronounced maximum for a
lower mantle viscosity intermediate to the extreme values
considered [see also Peltier, 1983]. The reason for this is
straightforward. The last major deglaciation event was assumed to
be completed by 5 ka in the ICE-3G reconstruction, and thus Earth
models with weak lower mantle viscosities (e.g., v,y = 10*' Pas),
and therefore relatively short relaxation times, will have small
present-day rates of adjustment since they will have nearly
returned to isostatic disequilibrium. Earth models with high lower
mantle viscosities (e.g., Vi = 10” Pa s) will, as a consequence of
their long relaxation times, exhibit slow adjustment at all stages in
their response. Earth models with intermediate values of v, will
have relaxation times short enough to ensure significant rates of
adjustment, but long enough that appreciable disequilibrium
persists to the present day.

The maxima in the curves of Figure 1 (generally) trend toward
lower values of v;,, as the degree £ under consideration increases.
The reason for this is that for a particular Earth model the
characteristic decay time of the fundamental mode of viscous
gravitational relaxation generally increases as the degree is
increased (the trend continues to about § = 20 [Peltier, 1976]).
Therefore, as we consider higher degrees, the particular relaxation
time which produces a maximum in the present day response (as
discussed above) will be characteristic of Earth models with
incrementally lower values of v, .
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A final characteristic evident in Figure 1 is that the amplitude
of the variation in the predictions (measured as a fraction of the
minimum value), at a particular degree, diminishes with increasing
degree (as an example the J, and J,, data predictions vary by a
factor of about 4 and 0.4, respectively). This is a manifestation of
the decreasing sensitivity of the J, data, with increasing spherical
harmonic degree, to the rheology of the lower mantle. This
varying sensitivity will be investigated more explicitly later, where
we compute Fréchet kemels for the J, data.

The solid lines on Figure 1 will serve as a basis for the
comparisons to be discussed in the remainder of this section. As
an example, the dashed lines on Figure 1 are results generated in
the same manner as the solid except that a different ice loading
history (which we denote as the "disk load" model) has been
utilized. The disk load model is based on approximations
described by Mitrovica and Peltier [1989] and [1991a]. Mitrovica
and Peltier [1989, Table 1] approximated the geometries of the
major ice sheets included in the ICE-3G reconstruction using a
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series of elliptical discs (one for each ice sheet) with fixed
perimeter and parabolic height variation, each having a very simple
linear (in time) volume fluctuation during the glaciation and
deglaciation phases. We adopt this model except we relax the
constraint of a fixed perimeter and assume instead that the same
volume fluctuation is achieved by maintaining plastic equilibrium
in the ice sheets (see Mitrovica and Peltier [1991a] for details).
As before, three full glacial cycles were included in the
calculations.

Although the disk load model was adopted from the ICE-3G
reconstruction, the results of Figure 1 indicate that substantial
inaccuracies result when predictions are made on the basis of the
simplified ice disc model rather than the detailed space-time
geometry of the ICE-3G reconstruction. This indicates that
predictions of the J; harmonics are sensitive to relatively small
errors in the space and time geometry of the late Pleistocene
deglaciation event. Furthermore, disk load approximations to this
deglaciation event, used in all previous considerations of the J,
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Fig. 1. Predictions of the zonal harmonics J, (with the label on each frame referring to the spherical harmonic degree £)
computed using the Earth model discussed in the text with an isoviscous upper mantle viscosity of 10?' Pa s and a lower mantle
viscosity ranging from 10" 1o 10® Pa s (as indicated by the abscissa). The solid and dashed lines refer to predictions using,
respectively, the ICE-3G and disk load model described in the text. In each case three full glacial cycles are assumed in the
analysis, and the ocean loading component of the surface load is computed using the gravitationally self-consistent theory.
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harmonics, have yielded inaccurate predictions of these harmonics,
and must be abandoned in favour of more detailed ice load
reconstructions using the theory outlined previously.

Predictions of J, are least sensitive to inaccuracies in the ice
disk model, though even at this degree the errors are non-
negligible (as high as order 10%). The PJ Legendre polynomial is
the same sign northward of 54.7 °N as it is southward of 54.7 'S
and therefore the contributions to J, from the disintegration of the
individual late Pleistocene ice sheets reinforce each other. As a
consequence J, predictions will tend to be sensitive to errors in the
total mass loss of the ice sheets, or alternatively errors in the total
eustatic sea level rise attributed to the final late Pleistocene
deglaciation event (as was shown by Wu and Peltier [1984]). The
predictions are, of course, also sensitive to errors in the timing of
the final deglaciation event. The ice disk model, since it exactly
matches the total eustatic sea level rise associated with the ICE-3G
deglaciation model, and closely approximates the chronology of
that model, performs relatively better at degree 2 than at other
degrees.

The results for J, provide another important illustration of these
arguments. During the last Pleistocene deglaciation event by far
the most significant mass loss occurred in the Laurentian and
Antarctic ice complexes [Tushingham and Peltier, 1991]. Since
the P§ Legendre polynomial is of opposite sign northward of 39'N
than southward of 39°S, the contribution to J; from the response
associated with these ice sheets are of opposite sense. Indeed,
detailed modelling (in the course of this study and by Mitrovica
and Peltier [1989]) has shown that those contributions are
relatively closely matched (notice the relatively small amplitude of
the J, prediction in comparison to the J, and J, predictions on
Figure 1) and therefore the total predicted response is sensitive to
the details of the Laurentian and Antarctic melting histories as well
as the details of the mass loss from the many smaller ice sheets.

The discrepancy evident in the top-middle frame of Figure 1 is
a consequence of this sensitivity. The mismatch between the
present-day J; response due to Laurentide and Antarctic melting is
large enough to dominate the prediction based on the actual ICE-
3G deglaciation history. In contrast, errors introduced using the
simplified ice disc model lead to inaccurate predictions which are
dominated by the response due to the melting of smaller northern
latitude ice sheets.

As a final example, the computed J, response is dominated by
the adjustment due to the melting of the Antarctic ice sheet, since
the major northern latitude late Pleistocene ice sheets were very
near the node of the P{ Legendre polynomial [Mitrovica and
Peltier, 1989]. As a consequence, modelling the Antarctic ice
sheet as a single circular or elliptical disk load is clearly
inadequate, and has led, on Figure 1 (top-right frame), to errors
varying from approximately 20-45%, depending on the lower
mantle viscosity. Of course, incorporating the full details of the
space and time geometry of the late Pleistocene ice sheets is also
fundamentally important in predictions of the J, response at
higher degrees (Figure 1).

A second component of the total surface load is the ocean load.
In Figure 2 we investigate the sensitivity of the predictions of J,
to various models of the ocean load component. The solid lines
on Figure 2 are transferred from Figure 1 and represent predictions
using the gravitationally self-consistent treatment of ocean mass
redistributions. The dashed lines were computed using the eustatic
ocean loading approximation, and the dotted lines were computed
by neglecting the ocean loading entirely.

Discrepancies between the three lines of Figure 2 are a function
of spherical harmonic degree. There are cases ( = 3,5 and
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perhaps 6) where the eustatic approximation is satisfactory, and
others (£ = 2,8 and 10) when the approximation is as poor as that
which would result from neglecting the oceans entirely.

Given the historical importance of the J, datum in inferences of
mantle viscosity, the errors incurred by the eustatic approximation
in predictions of J, are particularly significant. The peak
discrepancy between the solid and dashed lines is almost twice as
large as the error bar quoted by (for example) Rubincam [1984]
(0.57 x 10" yr'"). With the passage of time, as the observational
datum is reestablished and as errors in the datum diminish,
numerical predictions of J, must adopt a gravitationally self-
consistent ocean loading calculation.

Present-day ocean mass redistributions due to ongoing glacial
isostatic adjustment associated with the late Pleistocene glacial
cycles have been extensively examined [e.g., Clark et al., 1978;
Peltier, 1988; Peltier and Tushingham, 1989; Mitrovica and
Peltier, 1991b). A characteristic of the mass redistribution,
common to all gravitationally self-consistent solutions of the sea
level equation, is a net flux of ocean water away from the
equatorial regions. Mitrovica and Peltier [1991b] isolated the
mechanism for this mass redistribution and have termed it
"equatorial ocean syphoning." Regions of Earth which experienced
substantial late Pleistocene deglaciation, such as Canada and the
Antarctic, have a glacial forebulge at their perimeter which is
presently subsiding. Since a large portion of the forebulges are
situated in (relatively high latitude) oceanic regions, water flows
into these regions (or is "syphoned" away from the equator) as the
subsidence proceeds in order to maintain hydrostatic equilibrium.
Significantly, the eustatic ocean loading approximation, which
allows for no redistribution of water within the oceans, is
incapable of modelling the syphoning process.

Clearly, the redistribution of ocean mass from the equator
towards the glacial forebulges at high latitude will have a dominant
degree 2 geometry. It is not surprising, therefore, that the
discrepancies in the predictions of J, on Figure 2 are largest at
this degree. The sign of the discrepancy indicates that the mass
redistribution within the oceans (and the solid Earth deformation
associated with this mass redistribution) inherent to the
gravitationally self-consistent calculation tends to reduce the
oblateness of the geoid. This is precisely as one would expect
given a movement of mass away from the equatorial regions.

An equivalent explanation for the sign of the discrepancy on the
2 = 2 frame of Figure 2 can be made on the basis of Earth
rotation considerations. Wu and Peltier [1984] have shown that
variations in J, are proportional to variations in the angular
velocity of Earth. Using their scaling, the discrepancy on the first
frame of Figure 2 implies that the ocean syphoning mechanism
characteristic of the gravitationally self-consistent calculation acts
to increase the rotation rate of the planet (or decrease the length of
day). Indeed, the peak effect on Figure 2 (top-left frame) (which
occurs for Earth models with values of v, near 2.0 x 10% Pa s)
relates to a present-day decrease in the length of day of
approximately 1.7 x 10® ms/yr. Once again, this is consistent with
the reduction in the moment of inertia about Earth’s rotation axis
that would result from a transfer of mass away from the equatorial
regions. The comparison of the predictions of J, based on
gravitationally self-consistent ocean loading calculations, and
computations assuming an eustatic ocean redistribution, have thus
isolated a heretofore unrecognized, and potentially significant,
contribution to the long time scale non-tidal acceleration of Earth’s
axial rate of rotation (or, alternatively, secular variations in the
degree 2 zonal term of Earth’s geopotential).

As a final point, the strength of the ocean syphoning
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Fig. 2. Predictions of the zonal harmonics J, (see Figure 1) using the ICE-3G deglaciation chronology of Tushingham and Peltier
(1991a) modified to include three full glacial cycles. All calculations used vy, = 10” Pa s. The three lines on each frame are
distinguished according to the treatment of the ocean loading component. A gravitationally self-consistent calculation (solid line);
application of the eustatic ocean loading approximation (dashed line); and the total neglect of an ocean load (dotted line).

mechanism, or alternatively the net flux of ocean water away from
the equator, will be a function of the subsidence rate of the
forebulge and therefore a function of the viscoelastic structure of
the Earth model used in the calculations. Since J, is a measure of
the present day rate of glacial isostatic adjustment, it follows that
the contribution to J, from the ocean syphoning mechanism for a
particular Earth model will be roughly proportional to the total
predicted value of J, for the same model. This is clearly the case
on the degree 2 frame of Figure 2.

J, Predictions: Sensitivity to Manile Viscosity

In the last section we considered the sensitivity of the
predictions of J, to errors in the details of the surface mass load
distribution (associated with the late Pleistocene glacial cycles)
common to previous analyses. In this section we consider the
sensitivity of the predictions to variations in the rheology of the
mantle. All calculations will be performed using the ICE-3G
deglaciation chronology and the gravitationally self-consistent
ocean loading theory previously outlined. To begin, consider

Figure 3, where the dotted lines refer to forward calculations of the
J, harmonics for Earth models with v, = 10® Pa s, or an order
of magnitude less than the value used in the last section.

As discussed in the last section, calculations of the I,
harmonics, for Earth models with vy, = 10% Pa s, are
characterized by a pronounced peak over the range of vy,
considered on Figure 3. Let us denote this peak as Vfy. The
relatively large slopes of the solid curve, evident on both sides of
this peak value (particularly for £ < 7), indicate that the J, data
(£ < 7) are sensitive to lower mantle rheology for these classes of
Earth models.

The results on Figure 3 suggest that reducing the upper mantle
viscosity cf the Earth model by an order of magnitude can have a
profound effect on the sensitivity of the J, datum to the rheology
below 670 km depth. Indeed, with increasing spherical harmonic
degree { the computed (dotted) curves become progressively more
flat for Earth models with vy, > 9ty (and vyy = 10% Pa s),
indicating that flow is being confined more effectively to the upper
mantle region. Furthermore, the amplitude of the computed
present-day response for such Earth models (v, > Viy) is
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abscissa refers to the viscosity value of the Earth model below these respective regions.

appreciably higher, for the case vy, = 10° Pa s, than that
generated using Earth models with v, = 10" Pa s, suggesting that
the characteristic relaxation. time scale of the former set of models
is short enough 10 yield appreciable rates of adjustment, while long
enough to ensure that non-negligible disequilibrium persists. The
result is that the potential ambiguity in inferences of v, which
existed for Earth models with v, = 10% Pa s, is diminished
considerably for the case of vy, = 10% Pas.

The sensitivity of the J, data to lower mantle rheology
diminishes with increasing degree 0. The sensitivity of the data
to upper mantle rheology increases in the same sense. The latter
is especially evident in the region v,y < V{y on Figure 3, where
the discrepancy between the solid and dotted curves becomes more
pronounced as the degree £ rises.

It is of significance to note that the predictions for J,, though
certainly sensitive to the order of magnitude reduction in Vyy,
retain a sensilivity to variations in lower mantle rheology over the
full range of v, considered on Figure 3. This indicates that

appreciable degree 2 flow must persist below 670 km depth even
in the case of Earth models with weak upper mantle rheologies and
very large (> 2 orders of magnitude) viscosity siratification.

Inferences of mantle viscosity have come from geophysical
observables related to both glacial isostatic adjustment [e.g.,
Peltier, 1974; Cathles, 1975; Peltier and Andrews, 1976] and the
convective circulations in Earth’s interior [e.g., Richards and
Hager, 1984; Forte and Peltier, 1987; 1991]. There has been
some suggestion in the latter class of analyses [Forte and Pellier,
1987] that Earth models with a viscosity jump at 1200 km, rather
than 670 km depth, yield better fits to the appropriate data set
(which include low-degree geoid undulations and plate motions).
Accordingly, we have computed the J, harmonics for Earth
models with a viscosity of 10* Pa s above 1200 km depth and a
variable (isoviscous) value below it. The results are given by the
dashed line on Figure 3, where the abscissa now denotes the
viscosity below 1200 km depth.

The difference in the solid and dashed curves of Figure 3 is a
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result of the difference in the viscosity of Earth models between
670 and 1200 km depth. Earth models with high deep mantle
viscosities will tend to be characterized by a flow field which is
relatively more confined to the region above the viscosity increase.
It is not surprising, therefore, that the discrepancy between the
solid and dashed curves is greatest for Earth models with very stiff
deep mantle regions and that predictions of the J, harmonics
based on Earth models with a viscosity of 10* Pa s between 670
and 1200 km depth exhibit larger amplitudes (i.e., shorter
relaxation times) in this range of deep mantle viscosities. It is of
interest to observe that the predictions for this class of Earth
models (dashed lines, high deep mantle viscosity) are similar to
those for Earth models with vy, = 10* Pa s for £ > 3. This
suggests that at these degrees the relaxation times for Earth models
in which flow is (approximately) confined to an upper mantle of
viscosity of 10® Pa s are comparable to those for Earth models in
which the confinement occurs in a 1200 km region of viscosity
10* Pas.

As a final point, the small slope of the dashed curves on Figure
3, for Earth models with stiff deep mantle rheologies is, as before,
a reflection of a gradual loss of sensitivity to the rheology in this
region. This argues that the sensitivity to lower mantle viscosity
evident on the solid curves of the same figure, for Earth models
with vy, > V!, is due primarily to a sensitivity of the data to the
rheology in the region between 670 and 1200 km depth. The
result is that the ambiguity in inferences of deep mantle viscosity,
which existed for Earth models with v, = 10* Pa s, essentially
disappears for models with a viscosity of 10* Pa s between 670
and 1200 km depth.

The forward calculations on Figure 3 provide only indirect
evidence for the sensitivity of the J, data to the radial mantle
viscosity profile. A direct measure of the sensitivity requires the
calculation of Fréchet kernels and in the remainder of this section
we will consider kemels for the J, data which have been
computed (for various Earth models) using the theory previously
outlined. As an example, the Fréchet kemels for degrees 2
through 10, for Earth model with vy, = 10* Pa s and vy =3 x
10” Pa s, are given on Figure 4. (The discretization evident on
the figure reflects the 32 radial regions in which the numerical
prediction scheme outlined above is applied. (The kernels
discussed in this section are all scaled by r* (see equation (22)) in
order to facilitate a comparison of sensitivities at various depths.)

For this particular Earth model the J, data, for £ < 5, have a
non-negligible sensitivity to variations in viscosity which extends
to the deepest regions of the mantle. Indeed, the kemels for
degrees 2 and 3 peak at the CMB. As the spherical harmonic
degree is increased the peaks in the kernels tend to migrate to
shallower regions of the mantle. This migration is accompanied
by a reduction in the amplitude of the kernels within the lower
mantle, reflecting a gradual loss of sensitivity of the data to the
rheology of this region. This is, of course, manifested on Figure
3 by the gradual reduction in the slope of the solid lines at v =
3 x 10* Pa s (notice that the near-zero amplitude of the J,, J; and
J,, kemels in the lower mantle on Figure 4 is consistent with the
fact that the solid lines on Figure 3 peak near v, = 3 x 10* Pas
for the frames associated with these degrees).

Clearly the information provided by the Fréchet kernels is
compelling, however it is incomplete unless one considers the
dependence of the various sensitivities on the radial viscosity
profile of Earth model used in the calculations. On Figure 5 we
show Fréchet kernels for the J, datum for Earth models with three
different values of v, (and vy, = 10* Pa s; top frame) and two
different values of vy, (with v, =3 x 10*' Pa s; bottom frame).
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Fig. 4. Fréchet kemels for the J, (2 < € < 10) data, as a function of
radius (the abscissa is nondimensionalized using the mean radius of the
Earth), computed using the ICE-3G deglaciation chronology (modified to
include three full glacial cycles) and the standard Earth model described in
the text with vy = 10% Pa s and vy = 3 x 10” Pas. The label on each
kemel refers to the associated spherical harmonic degree £. The kemels
are scaled by a factor of 10"’.

The lower mantle viscosities considered on the top frame of
Figure 5 span a range of vy, values which includes 97
(approximately 2 x 10” Pa s; Figure 3). Accordingly, the area
under the curves varies from a negative value for the case of vy,
=3 x 10* Pa s (dotted line; reflecting the negative slope on Figure
3 for this Earth model at £ = 2) to near zero for v, = 2 x 10” Pa
s = V7 (solid line), and finally to a positive value for the high
viscosity lower mantle model (dashed-line; a region of v, space
in which the forward predictions for £ = 2 exhibit a positive
slope).

The evolution of the kernels on Figure 5, as v, is increased, is
intriguing. As v, approaches 2 x 10% Pa s the sensitivity of the
J, datum to variations in rheology in the top 500 km of the lower
mantle increases dramatically (to positive values). Surprisingly,
the sensitivity of the datum to variations in rheology below this
also increases, but much less dramatically and in the opposite
sense. At 92, the areas under the Fréchet kernel in the two
regions CMB-1200 km depth and 1200 km - 670 km depth are
equal and opposite, and the result is that the datum is stationary
with respect to small perturbations in v, ,,.

As the lower mantle viscosity is increased from 2 x 10% Pa s to
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Fig. 5. Fréchet kemels for the jz datum, as a function of dimensionless
radius, computed using the ICE-3G deglaciation chronology modified to
include three full glacial cycles. The Fréchet kemels on each frame are
distinguished by the radial viscosity profile used in the calculations. If we
specify a viscosity profile with isoviscous upper and lower mantle regions
as (Vyyg Vi), then the kemels labelled A, B, C and D were computed using
the following profiles: A (10 Pa s, 3 x 10% Pa s); B (10* Pas, 2x 102
Pas); C (10 Pas, 10® Pas); and D (3 x 10® Pa s, 3 x 10* Pa s). In
each case the kemels are scaled by a factor of 10'°,

10® Pa s the sensitivity of the J, datum to variations in viscosity
is diminished at all depths in the lower mantle. For an Earth
model with v;, = 10® Pa s the J, datum is entirely insensitive to
viscosity variations below about 1100 km depth, though an
appreciable sensitivity to such variations persists in the 500 km
region at the top of the lower mantle. We conclude that the two
branches evident on the predictions for J, on Figures 1 and 2 (and
the solid lines on Figure 3), characteristic of Earth models with,
respectively, a lower mantle viscosity less than and greater than
92y reflect an evolution in the dominant sensitivity of the datum
to viscosity variations in regions below approximately 1200 km
depth to regions above this depth in the lower mantle.

The results for J, on Figure 3 indicate that the second high
viscosity branch disappeared when the viscosity in the region
between 670 and 1200 km depth was constrained to be 10*' Pa s.
The results on the top frame of Figure 5 indicate why this is the
case. The slope of the second branch is due primarily to a
sensitivity of the J, datum to variations in viscosity between 1200
and 670 km depth, and therefore a set of Earth models which
allow no viscosity variation in this region cannot manifest this
sensitivity.

Over the entire range of lower mantle viscosities considered on
the top frame of Figure 5 it is interesting to note that the J, darum
remains relatively (though certainly not entirely) insensitive to
variations in upper mantle rheology. Not surprisingly, the greatest
sensitivity to such variations is exhibited by Earth models with v, ,
= 10® Pa s, though even in this case a constant perturbation in
viscosity applied to the lower mantle will perturb the J, datum
approximately five times as much as an equal perturbation to the
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upper mantle viscosity. The Fréchet kemel for an Earth model
with vy = 3 x 10 Pa s, given on the top frame of Figure 5,
indicates that the depth-dependent sensitivity of the I, datum to
variations in the viscosity profile can be altered appreciably by
weakening the upper mantle. In relation to the kernel for the case
Vuu = 10* Pa s, a weakened upper mantle has reduced the
sensitivity of the J, datum to the rheology of the lower mantle
below approximately 1250 km depth while increasing the
sensitivity at shallower depths. For Earth model with vy, = 10%
Pa s (and vy = 3 x 10% Pa s) a small constant perturbation in the
viscosity below 1250 km depth will perturb the J, datum
approximately two times as much as an equal perturbation to the
viscosity above 1250 km depth. In contrast, similar perturbations
to the Earth model with vy, = 3 x 10* Pa s will have an almost
equal effect on the datum (the ratio, in this case, is approximately
1.3:1).

On Figure 6 we show results analogous to Figure 5, for the case
of £=4. One difference in the figures is that the solid line on the
top frame of that figure was computed using an Earth model with
Viy = 7 x 10* Pa s which is close to the value of #},, evident on
Figures 1-3. The conclusions drewn from Figure 5 are also
applicable to the J, case. One apparent difference is that the
stationarity of the datum to variatious in v, for Earth models
with v,y = ¥y, is due not to & competing sensitivity at different
regions to a constant lewer mantle viscosity perturbation, but
rather to a lack of sensitivity over the entire lower mantle (solid
line, top frame of Figure 6). As v, is increased above 9}, the
high viscosity branch which occurs in the predictions (see Figures
1 and 2 and the solid line on Figure 3) is primarily a consequence
of an emergent sensitivity of the datum to variations in the
viscosity above 1000 depth. As in the case of the J, datum, Earth
models which constrain the viscosity of the shallow lower mantle
region to a constant value will necessarily mask this sensitivity
(see the dashed line on the top right frame of Figure 3).
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Fig. 6. As in Figure 5, except for the case of the J, datum. The Earth
models used in the calculation are as specified in Figure 5, except that the
kemel labelled B (the solid line on the top frame) was computed using the
viscosity profile (10* Pa s, 7 x 10% Pa s).
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As a final point, as v, is increased to very high values the
sensitivity of the J, and J, data to variations in viscosity in the
shallowest reaches of the lower mantle gradually diminishes.
Forward predictions indicate that an Earth model with vy = 10%
Pa s has very little sensitivity to viscosity variations in the lower
mantle. It is interesting to note from the top frames of Figures 5
and 6 that the peak sensitivity of the J, and J, data to variations in
upper mantle viscosity tends to migrate to shallower depths in the
upper mantle as the lower mantle viscosity of Earth model is
increased.

CONTRIBUTIONS TO THE J, HARMONICS FROM
CONTEMPORARY VARIATIONS IN THE
GLOBAL ICE MAsS

In this section we will consider the potential contribution to the
zonal harmonics J, from two sources. The first is the present-day
retreat of 31 small mountain glaciers and ice sheets analyzed by
Meier [1984], and the second is variations in the mass of the much
larger Antarctic and Greenland ice sheets. All the calculations
performed in this section will use the theory outlined previously
for incorporating a gravitationally self-consistent ocean loading
component in the total surface load.

The 31 sources included in Meier’'s [1984] analysis contribute
a total of 0.38 mm/yr of equivalent eustatic sea level rise. In
computing the individual contributions to this total we have used
long-term mass balances wherever these are known [Meier, 1984];
in this respect, our ice model coincides with case II of Peltier's
(1988, Table 1) tabulation of Meier’s results. We have treated all
sources as being spatially localized, point-like, masses.

The contribution to the J, harmonics (¢ < 10) from Meier's
sources is given on Figure 7, where the abscissa refers to the time
from the onset of a continuous and constant melting episode. The
results on the figure are in agreement with those computed
previously by Peltier [1988] for £ = 2 and by Sabadini et al.
[1988] for £ < 10. The very gentle slope in the curves on Figure
7 arises from a small non-clastic response over this time interval.
Clearly the results are insensitive to assumptions regarding the
viscosity profile of the Earth model.

A comparison of Figure 3 with Figure 7 indicates that the
contribution to the J, harmonics from ongoing glacial isostatic
adjustment due to the late Pleistocene glacial cycles will dominate
the signal due to Meier's sources at all degrees except £=3, over
the entire class of viscosity models considered on Figure 3.
Indeed, between f=4 and ¢=8 the smallest J, excitation on
Figure 3 is at least an order of magnitude higher than the
associated value on Figure 7.

It is interesting to note that the J, signal contributed by Meier's
sources (approximately 0.9 x 10" yr') is almost identical in
amplitude (and opposite in sign) to the maximum discrepancy
between the gravitationally self-consistent and eustatic ocean
loading calculations on the degree 2 frame of Figure 2. As we
discussed above, this discrepancy is due to the ocean syphoning
phenomenon [Mitrovica and Peltier, 1991b], which tends to move
waler away from the equatorial regions towards the peripheral
bulges encircling the now vanished late Pleistocene ice sheets.
Since most of Meier’s sources are in high latitude regions, their
net effect (that is, the total effect on the excitation of the P}
polynomial) is in the opposite sense. Thus, just as the syphoning
process reduces the oblateness of the geoid and the length of day,
the effect of Meier's sources is to increase both (the latter by
approximately 2 x 10? ms/yr, as previously demonstrated in Peltier
[1988]).
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Fig. 7. Calculations of the contributions to the zonal harmonics J, from
the retreat of the 31 small ice sheets and glaciers described by Meier
(1984). The net effect of the retreat is a custatic sea level rise of
approximately 0.38 mm/yr. The results are computed by assuming that this
mass transfer is continuous, and the abscissa refers to the time from the
onset of melting. The numerical label on each curve refers to the
associated spherical harmonic degree . Calculations are performed using
the Earth model described in the text with isoviscous upper and lower
mantle viscosities of 10*' and 4.5 x 10* Pa s, respectively.

Let us now consider the potential contribution to the J,
harmonics from mass variations in the Antarctic and Greenland ice
sheets. Peltier and Tushingham [1989], in an analysis of global
tide gauge records which they corrected for the influence of
ongoing glacial isostatic adjustment, have inferred a present-day
eustatic sea level rise of 2.4 + 0.9 mm/fyr. Douglas [1991], using
the same approach but avoiding tide gauge records in areas of
converging tectonic plates, has obtained an estimate of 1.8 £ .1
mm/yr. Using Douglas’ [1991] estimate, and the total eustatic sea
level rise of 0.38 mm/yr provided by Meier’s sources, suggests that
a sea level rise of approximately 1.4 + 0.1 mm/yr is unaccounted
for. Thermal expansion of the oceans [e.g., Etkins and Epstein,
1982] may account for a significant portion of this discrepancy
(such variations will not contribute a J, signal), however another
potential source of sea level change is an ongoing net transfer of
mass between the Antarctic and Greenland ice sheets and the
global oceans. The contemporary mass balance of these polar ice
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sheets is a subject of contention. As an example, there has been
some suggestion that the Greenland ice sheet is in a growth phase
[e.g., Zwally, 1989] and other suggestions of an opposite scenario
le.g., Carter and Robertson, 1990]. Given this uncertainty (which
extends to mass variations of the Antarctic ice sheet), we will, in
the calculations to be described in this section, consider the net
mass variation in each of the ice sheets to be a free parameter.
We will, in fact, assume a specific mass loss for the ice sheets
(equivalent to a eustatic sea level rise of 1 mm/yr) with the
understanding that the result can be scaled to yield predictions for
any alternate scenario (including a growth of the particular ice
sheet).

Since the Antarctic and Greenland ice sheets cover very large
geographic areas, it is conceivable that the excitation of the J,
harmonics may be sensitive to the space-dependence of the mass
variation on these ice sheets (see the analysis of Sabadini et al.
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(1988) for the case of the Antarctic ice sheet). We will, as a
consequence, consider three different scenarios: First, that the mass
flux occurs in a manner independent of geography on the ice
sheets; second, that the mass flux is proportional to the present-day
ice thickness; finally, that the mass flux occurs only on the
perimeter of the ice sheets. The J, excitation computed using
these scenarios on the Antarctic and Greenland ice sheets are
shown, respectively, on Figures 8 and 9. The abscissa refers to the
time from the onset of a melting episode which raises equivalent
sea level by 1 mm/yr.

The results of Figures 8 and 9 suggest that contemporary mass
variations in the Antarctic and Greenland ice complexes are
potentially very significant contributors to the present day secular
variations in the zonal harmonics of Earth’s geopotential. It is
perhaps not generally appreciated that mass variations in the
Greenland ice sheet are as efficient at exciting the secular
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Fig. 8. Predictions of the zonal hammonics J, (with the label on each frame referring to the spherical harmonic degree {) as a
function of time from the onset of continuous mass loss from the Antarctic ice sheet. Computations are performed assuming a
mass loss equal to 1 mm/yr of eustatic sea level rise. The predictions for an alternate ice/ocean mass transfer (including a growth
of the ice sheet) can be made by scaling the results on the figure accordingly. All calculations are performed assuming a
gravitationally self-consistent ocean mass redistribution, and the three lines on each figure refer to different cases for the manner
in which mass is removed from the Antarctic ice sheet: Solid line the mass variation is constrained to be proportional to the
present day ice height; dashed line mass variation is constant over the entire ice sheet; dotted line mass variations occur only
at the perimeter of the ice sheet. Calculations are performed using the Earth model described in the text with isoviscous upper
and lower mantle viscosities of 10* and 4.5 x 10* Pa s, respectively.
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Fig. 9. As in Figure 8, except for the case of present-day mass variations on the Greenland ice sheet.

variations J, as equal changes in the mass of the Antarctic ice
sheet. A simple consideration of the J, case indicates why this
should be so. The center of the Greenland ice sheet is near 73'N
latitude, while the center of the Antarctic ice sheet is near 82'S,
The ratio of the P polynomials evaluated at these latitudes is
approximately 0.9 and thus mass variations on the Greenland ice
sheet should be only about 10% less efficient at exciting a J,
response than mass variations on the Antarctic ice sheet. A
comparison of Figures 8 and 9 indicates that this is indeed the
case.

The results on Figures 8 and 9 also indicate, not surprisingly,
that the J, calculation generally becomes more sensitive to the
assumed space-dependence of the mass variation as the spherical
harmonic degree increases. Indeed, by degree 4 there is an order
30% variation between the predictions based on the three different
cases treated on the figures. This indicates that an accurate
prediction of the contribution of contemporary mass variations in
the large polar ice sheets to the J, harmonics, for £ > 4, requires
an accurate description of the spatial variation in the mass flux,
and not simply an integrated measure of that variation (as is
provided by the equivalent sea level change). It is important to
note, however, that the predictions at degree 2, and to a slightly
lesser extent degree 3, do not require such a detailed description.

The contributions to the J, harmonics from the melting (or
growth) of the Antarctic and Greenland ice sheets have the same
sign at several degrees (e.g., =2, 4 and 6). This has important
implications for the J, harmonic in particular. Variations in the
mass of the Antarctic and Greenland ice sheets are almost equally
efficient at exciting a J, response, and since the excitations are
relatively insensitive to the spatial pattern of the mass variation, a
very good approximation to the contribution to [, from
contemporary variations in the mass of those ice sheets requires
only that the total contribution to the present-day eustatic sea level
variation from these ice sheets be known. That is, one need not
know how the Antarctic and Greenland ice sheets contribute
independently to the eustatic sea level change (this holds whether
the ice sheets grow or diminish in volume). As an example, if 1.0
mm/yr of eustatic sea level rise was occurring because of net
changes in the mass balance of these polar ice sheets, then, from
Figures 8 and 9, the contribution to the J, harmonic due to this
mass exchange (and, of course, the resulting response of the solid
Earth) would be between 0.39 x 10"° yr! and 0.42 x 107" yr'.

Whenever the excitation of the J, harmonic is different for the
Antarctic and Greenland ice sheet (given an identical mass flux, as
in Figures 8 and 9), in amplitude and/or sign, the mass balance of
each ice sheet must be known. This is a significant complication
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to predictions of the contribution to the J, harmonics, for £ > 2,
from mass variations in those polar ice sheets.

One of the fundamental results from Figures 8 and 9 is that
variations in the mass balance of the larger polar ice sheets have
the potential of exciting a J, response which is comparable to the
response arising from ongoing glacial isostatic adjustment (see
Figure 3). This suggests that it is fruitless to attempt to constrain
mantle rheology by comparing predictions of present day J,
harmonics of the kind described in the last section with any
observational constraints, unless one can constrain variations in the
mass of the Antarctic and Greenland ice sheets. OQur results
suggest that the response at £=2, and to a lesser extent =4, may
be most promising since it may be possible to consider only the
net effect of mass variations from those ice sheets.

Finally, it is possible to use the results of this section and earlier
results, together with observational constraints on the J, data, to
bound variations in the mass of the large polar ice sheets. Once
again, the degree 2 case provides the most promising example.
Figure 3 indicates that ongoing glacial isostatic adjustment may be
reasonably expected to contribute a J, excitation in the range -0.2
x 10" yr' 10 -0.8 x 10™ yr'. Meier’s sources provide a signal of
approximately 0.1 x 10" yr' (Figure 7). Let us assume an
observational constraint on J, of -0.2 x 10" yr' 10 -0.32 x 10
yr! (this is the estimate quoted by Rubincam [1984]). The J,
contribution from mass variations in the Antarctic and Greenland
ice sheets would therefore range from -.1 x 107" yr' 10 0.5 x 10"°
yr' (this assumes that there are no other contributions to the J,
harmonic, however even a 50% error in the total contribution from
the melting of small ice sheets and glaciers would not alter the
results significantly). Using Figures 8 and 9, this suggests that the
net mass balance on the Antarctic and Greenland ice sheets is
contributing a eustatic sea level rise in the range -0.25 mm/yr to
1.25 mm/yr.

The main difficulty with this potentially important result is that
the observational constraint on .'l2 is, as discussed in the
introduction, now under review. If the estimate derived by
Rubincam [1984] is revised, then the constraint on sea level rise
will have to be altered accordingly. It is interesting to note,
however, that the estimate derived by Rubincam [1984] agrees well
with an independent constraint on the non-tidal acceleration of
Earth derived by Currot [1966] from an analysis of ancient eclipse
data [see Wu and Peltier, 1984].

Finally, an improvement in this procedure for constraining
present-day eustatic sea level change due to a variation in the
Antarctic and Greenland ice sheets is possible by invoking
independent constraints on mantle rheology. Indeed, the 1.5
mm/yr range in the sea level constraint described above (which
assumed the Rubincam [1984] estimate of I,) is due primarily to
the range of predictions for J, on Figure 3 arising from variations
in the rheology of Earth model.

CONCLUSIONS

We have developed the mathematical formulation required for
the prediction of secular variations in the geopotential for the case
of a spherically symmetric, self-gravitating, (Maxwell) viscoelastic
Earth model and an arbitrary surface load which can include a
gravitationally self-consistent ocean loading component. In this
paper the theory was specifically applied to predict the present-day
secular variations in the zonal harmonics of the geopotential (J,,
£< 10) arising from the surface mass loading associated with the
late Pleistocene glacial cycles. In our opinion the results, which
incorporate the very recent and well resolved ICE-3G
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reconstruction of the last late Pleistocene deglaciation event
(Tushingham and Peltier, 1991), represent the most accurate
prediction, to date, of this contribution.

In past analyses secular variations in the zonal harmonics have
been computed by modeling a limited subset of the late Pleistocene
ice sheets as ice disks with drastically simplified space-time
geometries, and by assuming that meltwater enters the oceans
eustatically. We have found that "ice disk" models introduce very
large errors in the prediction of the J, harmonics at all spherical
harmonic degrees except £=2, and conclude that such models
should be abandoned in favour of realistic models of the late
Pleistocene ice load geometry. A comparison of results obtained
using the ICE-3G reconstruction and the ice disk model (which
was constructed as an approximation to the ICE-3G model)
indicates that the forward predictions can be sensitive 1o relatively
small variations in the model of ice sheet collapse during the last
late Pleistocene deglaciation event,

The accuracy of predictions of the J, harmonics which assume
a eustatic ocean loading component varies with spherical harmonic
degree. We have found that the performance of the eustatic
approximation at degrees 2, 8 and 10 is particularly poor, and
characterized by an error which is comparable to that which results
from neglecting the ocean loading component entirely. Given the
historical importance of the J, datum in inferences of mantle
rheology, future calculations of these harmonics should incorporate
the gravitationally self-consistent theory for ocean loading. The
imminent measurement of the higher degree zonal harmonics from
an analysis of long time series satellite ranging data also provides
an impetus towards the more accurate theory.

A comparison of the predictions of J, using the gravitationally
self-consistent theory and the ocean loading approximation has
isolated a heretofore unrecognized contribution to the datum (or
alternatively a contribution to the non-tidal acceleration of Earth’s
axial rate of rotation). Gravitationally  self-consistent
determinations of present-day sea level variations due to the late
Pleistocene glacial cycles have indicated a net flux of water away
from the equatorial regions [Clark et al., 1978; Peltier 1988:
Peltier and Tushingham 1989, 1991; Mitrovica and Peltier,
1991b). Mitrovica and Peltier (1991b) have isolated the physical
mechanism for this flux, which they associate with the subsidence
of existing glacial forebulges, and have termed it "equatorial ocean
syphoning”.  Calculations using the eustatic ocean loading
approximation are incapable of modelling the syphoning process,
and we have found that the error which results in the J, prediction
can be of order 10% of the total contribution from the late
Pleistocene glacial cycles. The maximum discrepancy is
approximately -10™" yr' (see Figure 2; this represents a reduction
in length of day of about 1.7 ps/yr).

This paper has also been concerned with a detailed analysis of
the sensitivity of the J, data to variations in the radial viscosity
profile in Earth’s mantle, as inferred from forward analyses and
calculations of Fréchet kernels. For any given Earth model we
have found that the depth range over which a particular-J, datum
is most sensitive to variations in viscosity will generally trend
towards shallower regions as the spherical harmonic degree is
increased. As an example, for the case of our standard Earth
model (Vi = 10* Pa's, v, = 3 x 10* Pa s) the J, data, 0 < 4,
are sensitive to variations in viscosity over the entire mantle
extending to its deepest regions, while the J, 0 > 4, are less
sensitive to very deep mantle rheology and more sensitive to
variations in the upper mantle viscosity.

For Earth models with vy, = 10* Pa s, predictions of the J,
harmonics exhibit a pronounced peak when a wide enough region
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of v, space is considered. We have denoted the lower mantle
viscosity of the Earth model associated with this peak value as
O/y- Fréchet kernels computed for the case #=2 and f=4
indicate that the sensitivity of the data to variations in mantle
rheology is fundamentally altered as v, is increased from 10*' Pa
s to 10® Pas. For the case of =2 the kemels reflect a migration
of the dominant sensitivity of the data to viscosity variations in
regions below about 1200 km depth (for Earth models with v, ,, <
924 = 2 x 10® Pa s) to regions above this depth in the lower
mantle (for Earth models with vy, > 92,). The stationary point
evident in the forward predictions for J, occurs when the two
sensitivities are matched. As v, is increased further (to
approximately 10* Pa s) the J, predictions become insensitive to
small viscosity variations anywhere in the lower mantle. The
kemels for the J, datum reflect similar trends, with the exception
that the stationary point at 9{,, does not arise as a consequence of
competing sensitivities, but rather from a null in the sensitivity of
the datum to variations in viscosity anywhere in the lower mantle
(see Figure 6, top frame).

The sensitivity of the J, data to variations in the viscosity
profile in the shallowest parts of the lower mantle, for the case v,
2 Uty is reflected in the forward predictions given on Figure 3.
The dashed lines on that figure represent predictions for Earth
models in which the viscosity above 1200 km depth is constrained
to be 10 Pa s, and it is clear in this case that ambiguities in the
deep mantle viscosity solutions do not develop. The same is true
for forward predictions in which the upper mantle viscosity is
weakened an order of magnitude to v, = 10 Pa s and v, is
varied (dotted lines, Figure 3). Not surprisingly, in this set of
Earth models the dominant sensitivity of the J, data, to variations
in the viscosity profile, is concentrated in the upper mantle (the
evolution of sensitivity arising from a weakening of vy, is
apparent in the bottom frames of Figures 5 and 6).

These arguments represent specific cases of one of the more
general conclusions of this study. The sensitivity of the J, zonal
harmonics to variations in the radial mantle viscosity profile, is a
strong function of the viscosity model. Some generalizations are
certainly valid, for example that the zonal harmonics J,, £ > 4,
are very sensitive to upper mantle rheology, however even in this
case the detailed radial variation in the sensitivity of the data will
be a strong function of the viscosity variation above 670 km depth.
Conclusions regarding the sensitivity of the J, data to variations
in mantle viscosity must be associated with a particular class of
Earth models.

The potential sensitivity of the J, data to variations in the
viscosity of the shallowest regions of the mantle (in particular, see
Figure 4, for £ > 4) raises another important issue, The
calcylations performed in this study assume an Earth model with
a lithospheric thickness of 120 km. Variations in that parameter
may have a non-negligible effect on the predictions, especially for
€24 (but see Peltier [1984] for a discussion of the £ = 2 case).

A final consideration of the sensitivity of the zonal harmonics
J, to variations in the radial mantle viscosity profile must be
generated within the framework of an inverse theory applied to the
observed data. That is, the resolving power of the data (or datum)
can be assessed once a model is established which is consistent
with the observations. The theory for the computation of Fréchet
kemels, derived and applied in this study, will permit this
application.

We have applied our theory to compute the J, signal (for £ <
10) arising from the retreat of 31 smaller ice sheets and glaciers
analyzed by Meier [1984], and also from any potential mass
variations in the Antarctic and Greenland ice sheets. We have
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found that the J, signal from ongoing glacial isostatic adjustment
in consequence of the late Pleistocene glacial cycles will dominate
the signal from Meier’s sources at all degrees except 3 (between
degrees 4 and 8 the signal from the former is at least an order of
magnitude higher than that from the latter). The J, signal
contributed by Meier’s sources is the same magnitude, and
opposite in sign, as the maximum signal contributed by the ocean
syphoning phenomenon.

The J, signal arising from mass variations in the Antarctic and
Greenland ice sheets is potentially comparable to the glacial
isostatic adjustment signal. This indicates that a comparison of
observational constraints on the J, data with predictions of the
sort described in section 3, with the goal of constraining mantle
theology, will be useless unless constraints are placed on the signal
from present-day variations in the mass of the Antarctic and
Greenland ice sheets. The required constraints are weakest at
=2, and to a lesser extent §=4, where only the net mass flux
from the two ice sheets needs to be known accurately. At other
degrees the efficiency of mass variations in the Antarctic and
Greenland ice sheets in exciting a J, response diverges and the
mass flux from each ice sheet must be ascertained independently.
At degrees above £=3 the situation is complicated further by the
fact that the J, signal is sensitive, at these degrees, to the space
dependence of the mass variations on the two ice sheets.

Finally, we have outlined a procedure in which predictions of
the present-day J, signal due to the late Pleistocene glacial cycles,
as well as from Meier’s sources, may be used in conjunction with
an observational constraint on J,, to derive bounds on the net
present day mass flux from the Antarctic and Greenland ice sheets
to the global oceans, If Rubincam's [1984] estimate of J, (2.58 +
0.57 x 10" yr') is correct (the estimate is now under critical
review), then the results of Figures 3 and 7 indicate that the net
mass balance on the Antarctic and Greenland ice sheet is
contributing a eustatic sea level rise in the range -0.25 to 1.25
mm/yr. This range can be substantially reduced by invoking
independent constraints on the mantle viscosity profile. We must
emphasize, however, that the re-establishment of rigorous
observational constraints on the J, harmonics, which should be
possible in the next few years, is fundamental to an application of
the results described in this paper to studies involving inferences
of mantle rheology and constraints on present day global sea level
change.
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